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INTRODUCTION 

The salt-like carbides, mainly the carbides of the alkali 

and alkaline earth metals, are non-conductors of heat and 

electricity, are chemically unstable and are readily decomposed 

by reacting with water vapor. Their chemical bonds have more 

ionic character than the refractory carbides. 

In contrast, the refractory carbides, like the transition 

metal carbides, are very hard, are good conductors and are 

extremely stable chemically. The nature of their chemical 

bonds is complicated. Their high melting points and great 

hardness indicate covalent molecules similar to those in 

diamond while metallic bonds are suggested by their conductivity 

properties. 

The carbides of the rare earth metals have physical 

properties similar to the refractory compounds; yet, like the 

salt-like carbides, they are readily hydrolyzed by water and 

generate hydrocarbons. In fact, the hydrolysis of the rare 

earth carbides have been studied extensively. The arrangement 

of the carbon atoms in the crystalline structure of these 

carbides and the degree of hybridization of the carbon orbitals 

for bonding in the crystals have been supported by the kinds 

and amounts .of gaseous products from these reactions. 

From the small amount of data available, the characteristics 

of silicides appear to be similar to the salt-like and 
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refractory carbides. Little information exists concerning 

the properties of the rare earth silicides. Their physical 

properties appear to be similar to the rare earth carbides. 

The purpose of this research was first of all, to observe 

whether or not the rare earth silicides of the general formula 

M^Sig would hydrolyze like the rare earth carbides and, 

secondly, to observe the kinds and amounts of the reaction 

products. In addition, the relative molar responses of mono-

si lane and disilane in a gas chromâtograph were measured and 

that of trisilane was obtained by extrapolation. 



www.manaraa.com

3 

LITERATURE REVIEW 

Rare Earth Silicides 

In 1857, Deville and Caron prepared silicides.of the 

alkali and alkaline earth metals and copper by reactions which 

were similar to those used in the preparation of the carbides. 

Even so, little attention was given to the chemistry and the 

preparation of these compounds until Moissan and Smiles (1902) 

investigated their formation in an electric furnace. In most 

of their preparations these men formed the silicides by the 

direct combination of the elements. Due to the nature of 

their apparatus and their experimental procedure, their 

compounds contained several phases. Nevertheless, improvements 

in their methods have now made direct combination of the 

elements the usual method of preparation. Because initiation 

of the reaction required high temperatures, it was necessary 

to exclude air in order to prevent oxidation of the silicides. 

The reaction could not be carried out in vacua since the • 

volatilization of silicon prevented the production of 

stoichiometric compounds. This problem was solved by per­

forming the reaction under a protective atmosphere of argon 

(Samsonov, 1959)- Although contamination by oxygen was 

eliminated in this method, impurities were still prevalent 

from the materials of the crucibles which held the samples. 

Therefore, Samsonov and Neshpor (i960) prepared briquettes 
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from a powdered mixture of silicon and metal. The briquettes 

were sintered in a quartz tube in an argon atmosphere. They 

also tried hot pressing the powdered mixtures under a pressure 

2 
of 250 kg/cm at 1300-2150*0. The latter method required 

repetitive treatment in order to avoid porosity. Another 

successful method for the direct union of silicon and a metal 

is the heating of appropriate mixtures in an arc furnace 

filled with an inert gas (Elektroschmelzwerk Kempton, 1963). 

Other methods for the preparation of silicides are briefly 

discussed in the following paragraphs. 

(a) The thermal reduction of -a mixture of a metallic 

oxide and silicon dioxide (or metal silicate) by carbon 

produces a metallic silicide (Elektroschmelzwerk Kempton, 

1959; Samsonov, i960). Two reactions are suggested for the 

reduction (Samsonov, I96O). They are: 

MO + SiC MSi + CQ, (1) 

MO + SiO. - MSi + SiO (2) 

(b) The reduction of a metal oxide by silicon yields a 

silicide according to the reaction 

2M0 + 3Si - 2MSi + 8102 (Ban, I963).  (3) 

(c) The Goldschmidt thermite reaction produces silicides. 

This involves the reduction of a siliceous compound by 

powdered aluminum or magnesium in the presence of a free metal 

or metal oxide. (Samsonov, 1959) 

(d) Silicides formed by the reaction of a metal halide 

with silicon or by the action of a silicon halide on a metal 
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(Latva, iy6z). 

(e) Reactions in molten alloys yield silicides as in the 

case of the dissolution of a metal in copper silicide. 

(f) Silicides form during the high temperature electrolysis 

of molten salt baths containing a metal oxide and alkali 

fluosilicate (Hsu, 1961, Stern, I96O, Andrieux, I938). 

Usually, silicides form well shaped crystals which are 

"brittle and hard. Their melting points and work functions are 

high. As a rule, they have a metallic luster which varies from 

silvery-white to gray. Most silicides which contain more than 

50 percent metal show metallic conductivity. They have 

structures which range from typical alloy structures to the 

essentially salt-like compounds of the more electropositive 

elements. The chemical and physical properties of the silicides 

can be generalized for the two types of structures. 

Salt-like silicides, particularly those formed by the 

alkali and alkaline earth metals, in contrast to alloy-type, 

refractory silicides, 

(a) have relatively lower melting points and less thermal 

stability, 

(b) have in general poorer thermal.and electrical 

conductivity, 

(c) have chemical bonds which are polar, 

(d) are unstable, even in normally moist air, and 

(e) are not resistant to air oxidation. 
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The refractory silicides are mainly compounds of the 

transition metal elements and silicon. The physical properties 

of these compounds are discussed by Aronsson (I965). He has 

also made the following comparisons of the metal silicides 

with the respective metal carbides, borides and nitrides; 

(a) The silicides are easily cleaved whereas the carbides, 

nitrides and borides are not. 

(b) The transition metal silicides have lower melting 

points, lower hardness, higher brittleness and lower creep 

strength in the hot condition than carbides, borides and 

nitrides. 

(c) Silicides have a higher work function than carbides 

or borides. 

(d) A decrease in the heat of formation ( stability) with 

increasing transition metal group number is demonstrated by 

silicides, carbides, borides, nitrides and phosphides. 

(e) The silicides, carbides, borides, nitrides and 

phosphides of'the Group I through III (a) metals, including 

those of the lanthanides and actinides, are relatively unstable 

compounds which are easily decomposed by water, while those of 

the transition metals are refractory and chemically inert. 

Silicon displays an appreciable solubility in some metals, 

particularly manganese, iron, cobalt and nickel. This 

phenomenon is explained by the fact that silicon can be easily 

accommodated in metallic structures by substitution in contrast 

to oxygen and nitrogen which dissolve interstitially in many 
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metals. The crystal structure of silicides takes varied forms 

and generalizations are not easily made for each group or 

family of elements. Those containing less than 33 percent 

silicon form mainly alloy-like, body-centered cubic or face-

centered cubic structures. The disilicides, MSig, or those 

which contain 51-75 percent silicon generally have structures 

similar to AlBg, ThSig and GdSig types which are shown in 

Figures 1 and 2. (The GdSi2 structure is not shown in the 

figure since its structure is essentially a distorted ThSi2 

type.) The rare earth disilicides are usually of the ThSig or 

GdSig types while some of the latter metals in the lanthanide 

series form silicides with the AlBg structure. The silicides 

containing 33-50 atom percent silicon, some with the formula 

M^Si have an anti-CaP2 structure (see Figure 5)» Other 

silicides containing similar amounts of silicon form structures 

of the type similar to CUAI2, U^Sig, W^Si^ and Mn^Si^-

The structure of CuAl^ is conveniently described as being 

built up of layers of metal atoms (A-layers) as shown in Figure 

3. A single atom in a layer has eleven close neighbors. 

Successive A-layers are translated by half of the base diagonal 

to neighboring layers. Aluminum atoms fill the anti-prismatic 

holes between A-layers (see Figures 6 and 7)-

In the U2Si2 structure, successive A-layers are placed 

directly above one another to form the sequence A-A-A-... 

Silicon atoms fill the triangular prismatic holes and metal 

atoms fill the cubic holes between layers (see Figure 4). 
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Figure 1. The crystal structure of ThSi2 (Wells, 1962 p. 822) 

Figure 2. The crystal structure of AlBo. The smaller circles 
represent B atoms (Wells, 1962, p. 77^) 

Figure 3- A-layer of metal atoms (Aronsson, Lundstrom and 
Rundqvist, 19̂ 5, p. 60) 

Figure 4. UoSi2 structure projected on the basal plane. The 
large circles represent the silicon atoms 
(Aronsson, Lundstrom and Rundqvist, I965, P. 60) 

Figure 5* Crystal structure of MgoSi (Nowotny, Parthe and 
Lux, 1955, p. 866) 

Figure 6. CUAI2 structure projected on the basal plane. The 
black circles represent the silicon atoms (Aronsson, 
Lundstrom and Rundqvist, I965, p. 60) 

Figure 7» Crystal structure of Ta2Si of the CuAlo type 
(Nowotny, Parthe and Lux, 1955, P- 866} 
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Similar layers which consist of metal and silicon atoms 

can be used to describe the W^Si^ structure. For convenience, 

these layers are labeled B-layers (see Figures 8 and 9)* In 

"W^Si^, the sequence for the B-layers is denoted as B-B^yg x/2 

®~%/2'1/2'"^^®^® B 22/22 designates a B-layer translated by 

half of the base diagonal to neighboring layers. The square 

antiprismatic holes between B-layers in W^Si^ are filled with 

metal atoms. 

The Mn^Si^ structure (see Figures 10, 11 and 12), commonly 

known as the Nowotny-phase, is composed of layers similar to 

W^Si^ except the octahedral voids are not filled. Rare earth 

silicides of the formula, M^Si^, have this structure (Glady-

shevskii, 1963). Because the silicon atoms in these structures 

are well separated by the metal atoms, one would predict the 

main product of hydrolysis to be monosilane. 

Silanes 

The simplest compound of silicon and hydrogen, SiH^, was 

discovered by Buff and Wohler .(1857)• The air-sensitive gas 

was observed first as one of the products of the action of 

hydrochloric acid on some impure aluminum silicide. Subse­

quently, Wohler (1858) made the gas by reacting manganese 

or magnesium silicide with acids. The silanes were not fully 

characterized, however, until Stock and Somieski (1919) 

developed vacuum techniques to handle the air-sensitive gases. 

They prepared the silanes by the hydrolytic action of a mineral 

acid on magnesium silicide. About one-fourth of the magnesium 
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Figure 8. The crystal structure of WrSig. Plane layers of 
atoms are connected by full or broken lines. The 
small circles represent the silicon atoms. 
(Aronsson, Lundstrom and Rundqvist, I965, P. 61) 

Figure 9» Crystal structure of TarSio of the WcSio type 
(Nowotny, Parthe and Lux, 1955, P* 806) 

Figure 10. Crystal structure of MncSig. The small circles 
represent the silicon atoms. X shows the position 
of an octahedral void (Aronsson, Lundstrom and 
Rundqvist, I965, p. 62) 

Figure 11. Crystal structure of TacSi? of the Mnj-Sio type 
(Nowotny, Parthe and Lux, ±955, P- 860) 

Figure 12. Hexagonal unit of the crystal structure of Mn^Si^ 
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silicide was converted to mixtures of silicon hydrides. The 

mixture produced consisted of about 40 percent SiH^|_, 30 

percent SigHg, 15 percent Si^Hg, 10 percent Si^H^g and 5 

percent higher silanes. The mechanism of the hydrolysis was 

explained in terms of the attack of a proton on a negatively-

polarized silicon atom according to the reaction 

Si" + = SiH. 

The hydrolytic action of hydrogen ions on silicides 

was observed in various solvent systems in an attempt to 

increase the yield of the products. The production of silanes 

was greater when magnesium silicide and ammonium bromide were 

reacted in either liquid ammonia (Johnson, 1935) or anhydrous 

hydrazine (Feher, 1955)- The increase was attributed to the 

inertness of the silicon-hydrogen bond to ammonia. 

The silanes were also prepared by the reaction between 

a metal hydride and a compound in which silicon was bound to 

a more electronegative element. Essentially, the process 

occurred between a positively polarized silicon atom and a 

hydride ion represented by the reaction 

Û+6 -

Si-X + H - SiH + X" . 

Lithium aluminum hydride dissolved in ether is the most 

commonly used source for hydride ions (Pinholt, 194?). The 

higher silanes have also been prepared by passing silane 

through an ozonizer-type electric discharge (Gekhale, 1965)-
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Stock and Somieski (1916) established many of the physical 

properties of the silanes. They measured their melting and 

boiling points and found that monosilane and disilane were the 

only ones which were gaseous at room temperature. The chemis­

try of the SiH bond cannot be discussed accurately without con­

sidering the rest of the molecule to which it is bound. However, 

its chemical behavior can be predicted from a consideration of 

the dissociation bond energy and its role in similar reactions. 

The bond energy of Si-H is less than that of C-H. In contrast 

the bond energy between silicon and a more electronegative 

element, such as oxygen, is greater than that between carbon and 

a more electronegative element. Therefore, a Si-H bond in 

comparison with a C-H bond is more likely to react with an 

electronegative element in order to form a stronger bond. In 

other words, the Si-H bond is a stronger reducing agent. In 

addition, the Si-H bond requires less activation energy in order 

to initiate a reaction than C-H. This is particularly true 

when the silicon atom also forms a chemical bond with an 

electronegative atom. Reactions at the Si-H bond probably 

occur by the displacement of a hydride ion from the silicon 

atom. When this occurs, siliconium ions, analogous to carbon-

ium ions, should form but they have not been observed experi­

mentally in chemical reactions. The probable polarity of the 

Si-H bond accounts for its reactivity with Lewis acids (Ebs-

worth, 1963; Stone, I962). 

Monosilane reacts 

(a) violently with oxygen, chlorine and bromine at room 



www.manaraa.com

21 

temperature, 

(b) with iodine in the presence of aluminum iodide, 

(c) with HX in the presence of AIX^ (X = CI, Br, and I), 

(d) with water in the presence of a base, and 

(e) with alcohols when it is catalyzed by a base, acid, 

silver ion or powdered copper. 

Monosilane does not react 

(a) with nitrogen at 25°C, 

(b) with hydrocarbons at room temperature, 

(c) with ammonia except in the presence of amide ion, or 

(d) with pure water in quartz containers at room 

temperature. 

Silicon hydrides react with Grignard reagents under 

certain conditions. They add across multiple carbon-carbon 

bonds when heated in the presence of peroxide or platinum 

metal catalysts. They reduce aqueous solutions of transition 

metal compounds. The fact that monosilane does not react with 

chloroform or carbon tetrachloride while the higher silanes 

react violently with them indicates that the SiH bonds are 

more reactive in the higher silanes. 

The thermal stability of the silanes is less than that 

of the analogous paraffin hydrocarbons, and decreases with 

increasing molecular weight. Pure disilane decomposes slowly 

at room temperature. The decomposition rate increases with 

an increase in temperature or in the presence of monosilane 

(Harper, I96I). 
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Development of gas chromatography has made possible the 

separation and collection of longer chained silanes and their 

derivatives (Phillips, I963). Squalane, tritolyl phosphate 

and silicone oil have been the most common liquid phases for 

the columns. Phillips, Timms, and Simpson (1964) separated 

heptasilane from the reaction products of the hydrolysis of 

magnesium silicide by gas chromatography and showed the 

presence of structural isomers of tetra and higher silanes. 
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Hydrolysis of Rare Earth Carbides 

The hydrolysis of rare earth carbides have been studied 

by Damiens (I913), Moissan (1920), Villehume (I95I), Greenwood 

and Osborn (I96I), Kanno and Kachi (I962), Palenik and ¥arf 

(1962), Svec, Capelien, and Saalfeld (1964), Pollard, 

Nickless, and Evered (1963), and recently Kosolapova, 

Kaminskaya, Kovalenko, and Pustovoit (1965). The results of 

these studies have not been the- same for, seemingly, the same 

reactions. For instance, Damiens (I913) and Moissan (I920) 

did not observe the same amounts or kinds of gaseous products, 

except for ethyne, when they hydrolyzed the same rare earth 

dicarbides. Greenwood and Osborn reacted the rare earth 

dicarbides with sulfuric, nitric and chlorosulfuric acids as 

well as iodine. Although interesting, their results were ob­

scured and complicated by various side reactions. 

The results for the more recent experiments are summarized 

in Table 1. The quantity of hydrogen generated from the 

hydrolysis of LaCg and CeCg was not mentioned in the gas 

chromatograph experiments of Palenik and Warf (1962) and 

Kanno and Kachi (1962) since hydrogen was not collected in 

their work. Kosolopova et â . (I965) and Pollard ejk â . (1963) 

did collect hydrogen in their chromatography experiments. The 

work of Svec ejt (1964) was done by mass spectrometry 

techniques and therefore also permitted the observation and 

measurement of hydrogen. The following conclusions can be 

drawn from the table. 
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Table 1. Products from the hydrolytic reactions of rare 
earth dicarbides* 

Dicarbides ethyne ethane ethene methane hydrogen other 
products 

¥arf 

LaCo A B C 

CeCg A B C 

Kosolapova 

laC? AD C B 

CeC? AC D B 

PrC2 A B-C D B-C 

NdCg A B-C D B-C 

GdC^ A D C B 

Kanno 

LaCg A B C 

CeC? A B C 

Pollard 

LaCg ABC D 

CeCg A B C D 

NdCg A B C D 

GdCo A B C D 

*The amounts of the products are labeled relative to one 
another for each reaction. The product with the largest yield 
is labeled A. The remaining products are labeled in the order 
of decreasing amounts, B, C, and D, respectively. 
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Table 1 cont'd. 

Dicaroides ethyne ethane ethane methane hydrogen other 
products 

Svec 

La C2 A C D B 

PrC2 A D C 3 

NdCg A D B-C B 

Sin.C2 A D C B 

GdCg A D B C 

TbC2 A D B C 

DyCg A D G B 

H0C2 A C D B 

ErC2 A D C B 

TmC2 A D C B 

YbCg A C B 

LUC2 A D B 

D(l-Butyne) 

C(l-Propyne) 
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(a) The major product in all of the hydrolysis reactions 

is ethyne. 

(b) With the exclusion of hydrogen (which is discussed 

later), the major products at room temperature from the 

hydrolysis of LaC2 and CeC2 are, in order of decreasing amounts, 

ethyne, ethane and ethene. Kosolapova e;t a^. (1965) report a 

large amount of methane from the hydrolysis of LaC2• 

(c) In general, Kosolapova ejfc (I965) and Svec £t al. 

(1964) report hydrogen next in abundance to the production of 

ethyne. Pollard ejt (I963) disagree. They observed a 

relatively lower yield of hydrogen in comparison to the amounts 

of ethyne, ethane, and ethene. This difference has been 

attributed to the fact that their reactions were carried out 

at 100°C which promoted more hydrogénation of ethene and 

resulted in a greater amount of ethane and a decrease in 

hydrogen. 

(d) With the exception of YbC2, the hydrolysis of the 

heavier dicarbides beginning with H0C2 produces methane. 

(e) Pollard e;t aJ. (I963) and Svec ejfc al. (1964) report 

the appearance of 1-butene, 1,2-butadiene, and 2-butyne among 

the reaction products of the hydrolysis reactions. 

Svec et al. (1964) hydrolyzed the rare earth sesquicarbides 

with 1.0 N HCl. (Pollard £t a^. reported data for the 

hydrolysis of which agreed with Svec et a^.) The results 

are recorded in Table 2. The conclusions which can be drawn 

from these results are listed below. 
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Table 2. The hydrolysis products from reactions of rare earth 
sesquicarbides with 1.0 N HC1& 

Carbide hydrogen methane ethene ethane ethyne other 

La2 A C B D(butyne) 

CegC? B C A D(butyne) 

PrgC- B C A D(butyne) 

NdgCg B D C A 

A D B C(butyne) 

GdgC? B C-D A C-D(butyne) 

TbgC? A C D B 

HOgC- B D C A 

ErgCg A C D B 

TmgC^ C B D A(propyne) 

Lu 2 C A D B(propyne) 

Y2C3 B C D A 

The amounts of the products are labeled relative to one 
another for each reaction. The products are labeled in order 
of decreasing amounts. A, B, C, and D, respectively. 
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(a) Lighter metal carbides produce more hutyne. 

(b) Acetylene is the major product from the lighter 

carbides. 

(c) Heavier carbides show a greater production of methane 

and propyne. 

The hydrolysis of the rare earth sesquicarbides produces more 

methane and propyne than the hydrolysis of the rare earth 

dicarbides under the same reaction conditions. The larger 

production of odd numbered hydrocarbons has been at ributed 

to the existence of groups in the crystal structure of the 

sesquicarbides (Kanno and Kachi, 1962). This cannot be taken 

- 2  
seriously since crystallography studies have shown that Cg 

groups occur in the crystal structure for (Atoji e_t , 

1958). 

Palenik and Warf (1962) have reported no ethyne and more 

odd numbered hydrocarbons when the dicarbides are hydrolyzed 

at a high temperature. Moissan (1920) found no difference in 

the reaction products when the hydrolyses were performed at 

0°C and room temperature. 

If the strength of the acid used as the hydrolyzing 

reagent is varied, the relative amounts of the products varies 

accordingly (Svec ejt £l. 1964; Pollard £t I963) • No 

difference is observed in the relative amounts of products 

when the hydrolyzing agent is HgO, HCl, or although the 

latter does give higher yields (Pollard £t I963). Nitric 

acid, on the other 'hand, curtails hydrogénation and 
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polymerization since it produces less ethane, acetylene, 

Cj^-hydrocarbons and more ethylene. The free radical reactions 

CHg" + NO -> GH^NO and (4) 

CgH^' + NO - CgHrNO (5) 

are well known (Forsyth, 19^1). Perhaps these reactions 

prevent the recombination of radical fragments to form 

longer chains. 
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EXPERIMENTAL PROCEDURES 

Preparation of the Rare Earth Silicides 

Lanthanum, cerium, praseodymium, neodymium, gadolinium, 

dysprosium and erbium were obtained in the form of rods, 3/8 

inches in diameter, from the Ames Laboratory of the A.E.G., 

Ames, Iowa. When the metals were obtained from the labora­

tory, their maximum purity was approximately 99-5 percent by 

weight. The impurities on an atom percent basis were mainly 

interstitial elements such as oxygen, nitrogen and hydrogen. 

A portion of the rods was machined in a small lathe mounted 

in a controlled atmosphere box. The box was continuously 

flushed with helium during the machining of the metal. The 

machined metal rod was placed in a vial which was previously 

flushed with helium. The metal was delivered in this form to 

the arc melter for the combination with silicon. 

The rare earth silicides, M^Si^, were prepared under one 

atmosphere argon in a nonconsumable arc furnace. A water cooled 

tungsten electrode was used as the cathode and a water-cooled 

copper hearth, the anode, was used as the mold in order to 

eliminate crucible contamination during the melting. Stoi­

chiometric amounts of silicon (c. O.5 grams) and rare earth 

metal (c. 4.5 grams) were weighted exactly and placed in a 

dish-shaped indentation or mold in the copper hearth. The 

- 9 
reaction chamber was evacuated to a pressure of 10~ to 10"^ 

torr before it was filled with tank argon to one atmosphere 
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pressure. The samples were melted by an arc from the tungsten 

electrode operated at 30 volts DC with IOO-I5O amperes of 

current. Prior to the melting of any samples, a zirconium 

getter button was melted several times in order to purify the 

argon of residual nitrogen and oxygen. Each melted sample was 

turned upside down and remelted. This process was repeated 

several times in order to achieve maximum homogeneity and to 

insure complete reaction in the center of the specimen.- Each 

rare earth silicide button prepared was embedded in Bakelite 

and cut so that a section of the silicide was exposed. The 

surface,was mechanically polished on a Syntron vibratory pol­

isher (Syntron Company, Homer City, Pa.) which had a hard wax 

polishing surface and a water suspension of alumina polishing 

compound. Photographs were taken on the polished surface at 

250 X magnification by means of a Bausch and Lomb Research 

Metallograph. This was done in order to determine the purity 

and uniformity of the silicide. Also, for the same purpose 

powder patterns and diffractometer traces were made with a 

Qebye-Scherrer X-ray apparatus. 

Preparation of the Silanes 

A diagram of the apparatus used for the preparation of the 

silanes and for the hydrolytic reactions of the silicides is 

given in Figure I3. Before the experimental conditions and 

procedures for the reactions are discussed, brief descriptions 

of some of the components of the apparatus follow. 

The reaction vessel, shown in Figure I3, is a closed bottom 
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tube, 16 cm X cm, with an enlarged open top. Near the 

enlarged portion leading from the reaction vessel is attached 

a side arm. A large bulb, 4.5 cm in diameter, is blown into 

the side arm in order to trap any liquid which boils from the 

reaction. The reaction vessel is of such size that a rubber, 

serum bottle septum fits snugly in the enlarged portion. 

During the reactions a pool of mercury covers the septum to 

insure that the reaction is completely isolated from the 

atmosphere. 

The drying tubes, illustrated in Figure I3, were Pyrex, 

brand glassware (Schwartz absorption tubes. Corning Glass Works, 

Corning, New York). Each tube was filled with phosphorus pent-

oxide in a dry box. The drying agent was held in both arms of 

the drying tube by means of glass wool. 

The sample tubes, illustrated in Figure 14, were U-shaped. 

The distance between the arms of the U was approximately 4 cm 

and the length of the arms from the bottom of the U was approxi­

mately 14 cm. The bore of the tube was 6 mm in diameter. Each 

sample tube was filled with Celite Analytical Filter-Aid (Johns-

Manville, 22 East 40th St., New York, New York) coated with 10 

percent Silicone Oil 702 (Dow Corning Corp., Midland, Michigan, 

U.S.A.). The Celite was held in place by glass wool tucked into 

each arm of the U-tube. The top of each arm of the U-tube was 

fitted with a Teflon needle valve (1 mm, Lab-Crest, Fisher and 

Porter Co., Warminster, Pennsylvania) which screwed into a 1 mm 

glass constriction to form a seal. Connected perpendicularly 
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Figure 13• Apparatus for the hydrolytic reaction of the 
rare earth silicides 
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Figure 14. Sample tube 
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SAMPLE TUBE 
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U-tu"be was an outer or inner 7/25 tapered glass joint. 

The reaction vessel, two drying tubes, a sample U-tuhe, 

a diffusion pump and a mechanical pump were connected in 

sequence in that order. During the preparation of silanes 

for the purpose of identifying their peaks on the gas chromato-

grams, magnesium silicide was reacted with 20 percent H^POj^. 

The reaction vessel was thermostated in a beaker of boiling 

water in order to vaporize the higher silicon hydrides. Heat­

ing tapes (110 volt, 8' x 11", Briskeat, Briscoe Mfg. Company, 

Columbus, Ohio) were wrapped around the tubes connecting the 

reaction vessel, the drying tubes and the sample U-tube. The 

tape was operated at approximately 100°C in order to prevent 

the condensation of the higher silicon hydrides in the 

connective tubes. After the apparatus was assembled, magnesium 

silicide, previously pulverized in a steel mortar and pestle, 

was dropped into the reaction vessel and the entire system was 

evacuated. The serum bottle stopper was sucked into place and 

covered with mercury. When the pressure of the system became 

approximately 10"^ torr as indicated by an ion gauge, the 

sample U-tube was cooled by raising a Dewar of liquid nitrogen 

around it. The reaction was started slowly at first by inject­

ing a small amount of 20 percent phosphoric acid through the 

pool of mercury and the rubber septum by means of a syringe 

(B-D Yale Luer-Lok, Becton, Dickinson and Co.). The gaseous 

products were condensed and absorbed in the sample U-tube while 
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the non-condensable s, sucn as hydrogen, were puaipea away. After 

the reaction was complete, the valves on the sample U-tube, as 

well as the rest of the stopcocks in the system, were closed. 

The sample U-tube was removed and taken to the gas chromato-

graph inlet system. The same procedure was used for the reac­

tion of the rare earth silicides. The duration of the hydro-

lytic reactions ranged from 2 to 4 hours. Approximately 1^0 

mg. of the rare earth silicide required about 10 ml. of acid 

for complete hydrolysis. 

Separation and Identification of the Silanes 

The apparatus used for the separation and collection of 

the silane fractions for identification can be divided into 

four parts: (a) the inlet system to the gas chromatograph, 

(b) the gas chromatograph, (c) the collection system, and 

(d) the mass spectrometer. 

(a) The most important part of the inlet system is the 

gas sampling valve (XA-204, Wilkens Instrument and Research, 

Inc., Walnut Creek, California). A cross sectional diagram of 

the gas sampling valve is illustrated in Figure 15. Ports 1 

and 6 are connected to a vacuum pump. Ports 3 and.4 are 

connected to the helium supply and the entrance of the 

chromatograph column, respectively. Ports 2 and 5 connected 

to the sample U-tube. When the plunger is pulled, helium flows 

into port 3 s-nd exits through port 4. In this portion the 

sample U-tube and the vacuum pump are isolated from the flow of 

helium. This allows the space between the Teflon valve of the 
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sample U-tube and the gas sampling valve to be evacuated before 

the air-sensitive silanes are flushed into the gas chromatograph. 

When the plunger is pushed, the helium is directed through 

ports 3 and 2 to one side of the sample U-tube, picks up the 

sample, and returns through the ports 5 and 4 of the gas 

sampling valve on its way to the chromatograph column. With 

the plunger in this position, the tubes leading to the vacuum 

pump are isolated from the flow of helium and the sample. 

The copper tubing leading from the ports 2 and 5 are con­

nected to an outer and inner 7/25 tapered glass joints, 

respectively, by means of Kovar seals. The sample U-tubes 

are fastened to the tapered glass joints by means of 

Apiezon W. Wax. 

(b) The gas chromatograph (Autoprep Model A-JOO, 

Wilkens Instrument and Research, Inc., Walnut Creek, Califor­

nia) contains an aluminum column, 10' x 3/8", packed with 10 

percent methyl silicone fluid (8F-96, Wilkens Instrument and 

Research, Inc., Walnut Creek, California) on Chromasorb T. 

A thermal conductivity cell made with tungsten filaments is 

used as a detector. The unit is designed with heaters within 

the housings for the column, the detector and the liquid 

sample injection port. Throughout the entire work with the 

silanes, the temperature for the sample inlet and detectors 

was kept at approximately 100°C. The sample tubes were also 

kept at ~100°C by means of a beaker of boiling water. The oven 

temperature for the column was maintained at 65"C by means of a 
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"cnermostat and an oven fan which continuously stirred the air 

around the column. The unit was equipped with a bubble flow 

meter for measuring the flow rate of helium through the column. 

The flow was timed with a Lab-Chron l401 Timer (Labline, Inc., 

Chicago, Illinois). For the collection of longer chain 

silanes with large retention times, the flow rate was regu­

lated at 80 ml/min; while for the identification of the pro­

ducts from the hydrolysis reactions of the rare earth silicides, 

it was set at 40 ml/min. In order to improve the resolution 

of the chromatogram peaks, a copper column, 8' x 3/8", packed 

with 10 percent Silicone Oil 702 (Dow Corning Corp., Midland, 

Michigan) on Celite Analytical Filter-Aid (Johns-Manvilie, 22 

East 40th Street, New York, New York) was added. 

Grade A helium (Bureau of Mines, Amarillo, Texas) which 

was double-filtered through activated charcoal by the supplier, 

was introduced into the column at a pressure of 50 p.s.i. The 

7/25 tapered glass joints of the sample U-tubes were sealed to 

the tubes leading to the gas sampling valve with Apiezon ¥ wax. 

The sample U-tubes were thermostated in boiling water and a 

heating tape (Briskeat, Briscoe Mfg. Company, Columbus, Ohio) 

was wrapped around the glass and copper tubing leading to 

the column. This was kept at approximately 100°C in order to 

prevent the condensation of the longer chain silicon hydrides. 

Before the introduction of each gas sample to the chromatograph, 

the air was pumped from the connective tubes between the sample 

U-tube and the gas sampling valve. This required approximately 
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thirty minutes. During this time the sample u-tuDe temperature 

was approaching 100°C. The plunger of the gas sampling valve 

was pushed and the valves to the sample U-tube were opened, 

permitting helium to flush the sample into the column. 

(c) When a silane fraction emerged from the chromatograph 

as indicated by the formation of a peak on the chromatogram, 

a liquid nitrogen trap was raised around the collection U-

tube which was previously flushed with helium. With the 

completion of the peak, the valve on the collection U-tube 

furthest from the chromatograph was closed, followed by 

closing the valve on the collection U-tube next to the 

chromatograph. This precaution was taken to prevent the back-

influx of oxygen from the atmosphere. The collection U-tube 

was delivered to the mass spectrometer in order to identify 

the chromatograph peak or to a special manometer in order to 

measure the number of moles for the calculation of the 

relative molar responses of silane, disilane and trisilane. 

(d) A 60°. magnetic sector mass spectrometer (Sparrow, I966) 

was used for the"identification of the chromatogram peaks. The 

silane fractions were introduced into the mass spectrometer at 

_c; 
a pressure of 2 x 10 ̂  torr and ionized with 70 eV bombarding 

electrons. Xenon was added with the silanes in order to aid 

the assignment of the masses of the ion peaks. 

Relative molar responses 

The determination of the relative molar responses required, 

in addition to the apparatus already mentioned for the 
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preparation of pure fractions of silanes, a manometer and a 

precise knowledge of the volume of the collection U-tubes. The 

manometer was of usual design made from 2 mm glass capillary. 

The collection U-tubes were calibrated for volume by weighing 

the tubes filled with mercury and calculating the volume from 

the density of mercury. 

In the procedure for the determination of the relative 

molar response, the collection U-tube containing the condensed 

silane was taken from the chromatograph and attached directly 

to a vacuum line. The valves on the collection tube were 

closed while the air was pumped from the connecting tubes. 

The collection U-tube was cooled in liquid nitrogen. The 

valve of the collection U-tube leading to the vacuum pump was 

opened until the pump stopped "gurgling". The purpose for this 

was to pump the helium from the sample tube before pressure 

measurements were made of the collected silanes. 

The collection U-tube was removed from the vacuum line 

and connected to. the manometer. While the U-tube was approach­

ing room temperature, the space between the mercury column and 

the collection U-tube was pumped for at least an hour. The 

valve leading to the vacuum pump was closed and the needle 

valve of the collection U-tube opened. The change in pressure 

readings was recorded. The needle valve was closed. The 

collection U-tube was removed and returned to the inlet system 

of the gas chromatograph. The previously mentioned procedure 

was used to introduce the silane again through the chromatograph 
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column. Iwu luicxolitari cf benzene -.vac introduced along ̂ ith 

the silane , through the injection port by means of a micro­

liter syringe (705 N., Hamilton Company, Inc., whittier, 

California). The benzene served as a standard reference for 

the determination of the relative molar response for the 

silanes. The relative molar responses for the hydrocarbons 

were similarly determined by Rosie and Grob (1957) and Messner, 

Rosie, and Argaright (1959)- The areas of the peaks were 

measured with a compensating polar planimeter (K + E 4242 

Keuffel and Esser Co., Germany). 
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The relative molar response (RMR) for mono- and disilane 

was calculated in the same manner as the relative molar respon­

ses for the hydrocarbons (Messner, Rosie and Argaright, 1959)-

The equation for the calculation is: 

(R]VIR of silane) (Moles of silane) _ 
Area of silane peak 

(Moles of benzene) (RiVER of benzene) 
Area of benzene peak 

The RMR of benzene was arbitrarily chosen to be 100. The 

number of moles of silane was calculated from the gas law 

equation, PV = nRT, where 

Y = the volume of the collection U-tubes (6.5178 ml. and 

5.9298 ml), 

R = the gas constant (6236. ml-cm/deg-mole), 

T = the absolute temperature (°K), 

P = the change in pressure (cm) and 

n =. the number of moles. 

The relative molar response for monosilane was determined before 

that of disilane. This was necessary for the calculation of 

the RMR for disilane since the chromatogram for the disilane 

decomposed to form monosilane or else the separation of the 

disilane fraction from the monosilane was not complete in the 

chromatograph. At any rate the number of moles of monosilane 

was calculated from the area of its chromatogram peaks and its 
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prGviously mcàyureù ïuviR ana was subtracted from the total moles 

collected in the U-tube in order to ascertain the number of 

moles of disilane. 

Later in the discussion, calculated values for the thermal 

conductivities of the silanes are given in Tables 5 and 6. 

These calculations are discussed in the Appendix. 
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RESULTS 

Rare Earth Silicides 

The microphotographs of the rare earth silicides are 

shown in Figures I7, 19 - 2$. The black spots are probably 

cavities in the surface while the gray areas are most likely 

another phase. Since the diffractometer traces and the X-ray 

powder patterns revealed no strong indications of free metal 

or of free silicon, the gray areas are perhaps oxides, 

although the X-ray data do not indicate this. This phase is 

not concentrated enough to produce definitive X-ray identifica 

tion. The small black areas in the picture for the respective 

silicides of the metals (see Figures I7 and 19), is an 

indication that the impurities might have volatilized in,the 

formation of the silicides. 

Mass Spectra of Silanes 

The mass spectra of the silanes obtained here are given 

in Figures 26 and 27 along with those reported by Pupezin 

and Zmbov (I958), Gallery Chemical Co. (ca. 1950), and Svec 

and Saalfeld (I963). 

Reactions for the silanes which are initiated by a 

bombarding electron must explain the following observations 

for the silane fragmentation patterns: 

(1) A large ion peak was recorded at m/e = 120 and at m/e 

60 as long as pentasilane molecules were present in the source 

The presence of pentasilane was followed by the occurrence of 
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Figure 16. Microscopic structure of dysprosium 
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Figure I7. Microscopic structure of Dy^Si^ 
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Figure l8. Microscopic structure of erbium 
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Figure 19. Microscopic structure of Er̂ Sî  
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Figure 20. Microscopic structure of Cej-Si- before it was 
annealed ^ ^ 
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Figure 21. Microscopic structure of Cej-Si- annealed at 
1000°C for two hours ^ 



www.manaraa.com

54 

Figure 22. Microscopic structure of La Si 
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Figure 23- Microscopic structure of Pr^Sig annealed at 
1100°C for two hours ^ ^ 
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Figure 24. Microscopic structure of Gd^Si^ 
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the ion peaks at m/e = l40 to ra/e = 152. 

(2) During the decomposition of pentasilane, the ion peak 

at m/e = 120 became smaller as the ion peak at m/e = 90 

became larger. 

(3) After the complete decomposition of pentasilane, the 

large ion peaks were at m/e = 58 and at m/e = 90. This stage 

of the pentasilane spectrum corresponded to the tetrasilane 

spectrum. 

(4) During the decomposition of tetrasilane, the ion peak 

at m/e = 90 became smaller while the ion peak at m/e = 60 

became larger. 

(5) After the complete decomposition of tetrasilane, the 

largest ion peak occurred at m/e = 60. This stage of the 

pentasilane or tetrasilane spectrum corresponded to the 

spectrum for trisilane. 

The bond-breaking and bond-forming processes which may 

be taking place are diagrammed in the equations on the following 

pages. 

The energy for the Si-Si bond is approximately 25 kcal/ 

mole less than the energy for the Si-H bond;(Sbsworth [I963]) 

hence, the splitting of the silyl radical from a pentasilane 

molecule (Equation 6) is more probable than the elimination of a 

hydrogen atom from the pentasilane molecule. Equation 7 is 

more probable than equation 8. The removal of a second hydrogen 

atom from monosilane is more difficult, thermodynamically, 

than the removal of a second hydrogen atom from tetrasilane. 



www.manaraa.com

H H H H H H H H H 

H - Si - Si - Si - Si - Si - H ^ H - Si - Si - Si - Si • 

H H H H H H H H H 

H H H H H H H H H 

HSi • -l- H - Si - Si - Si - Si' -> 8IH4 + • Si - Si - Si - Si 

H H H H H 

8IH4 

H H H H 
I I 

SiH2 + H2 + 6 + e 

(m/e = 30) (m/e = 120) 

or from the products of equation (6), 

H 

•Si - H - SiH, + H~ 

H 

H H H H 

H~ + H - Si - Si - Si - Si • - SiuHg + Hg + 2e 

H % % % (m/e = 120) 

H H H H 

•Si - Si - Si - Si- -, Si_H^: + SiH2 = 

H H H H 1 1 

Si^Hg + 2e SiHg + 2e 

(m/e = 90) (m/e = 30) 



www.manaraa.com

H H H H 

•Si - Si - Si - Si- 2Si2H^: 

H H H H 

2Si2H^: 

Sig H4: + e - Si2Hi| + + 2 e 

H H H H H H H 

HSi - Si - Si - Si - SiH - HSi -- Si • + 

H H H H H H H 

H H 

SiHg" + H - Si - Si' —> SigH^: + SiH^ 

H H i 

812^^ + s 

(m/e = 60) 

H H H 

SiHg" + H - SI - Si - Si- - Si^Hg-* + SiH^ 

H  H  H  1  

Si^Hg + e 

(m/e = 90) 

H H H 

H - Si - Si - Si - H - SigHr' + SiH-' 

H H H 

(10)  

H H 

Si - Si - H 

H H 

(11) 

(12) 

(13) m 
U) 

(14) 

(15) 
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SiHg' + SigH^' SiHj^ + 

1 

SiH^i+s -* SiH^ + H2 + 2e ^^2^4 2e 

(m/e = 60) 

(16)  

m 4=-
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The Si-H bond from the larger silanes is more reactive, 

consequently more weak, than the SiH bond in monosilane 

(Ebsworth, 1963). In other words a hydrogen atom migrates 

from the radical in order to produce the stronger 

bond with SiH-'radicals. 
j 

The ions, Si^Hg (m/e = 90) and Si2H^ (m/e = 60) can be 

formed by two processes, (a) by the equations 6, 9, 10 and 

11 or (b) by equations 12, I3 and l4. By either process the 

•ion, Si^Hg(m/e = 90), increases with a decrease in pentasilane 

and/or the Si^Hg ion (m/e = 120). The process by way of the 

equations 6, 9, and 10 is supported by the presence of the ion 

Si^Hg (m/e = 120). However, equation 12 does explain a large 

ion peak, Si2H^ (m/e - 60). Equation 12 resembles the fragmenta­

tion reaction for the paraffins while equation 6 does not. The 

reaction shown by equation 12 is the reaction predicted by 

the theory of Lennard-Jones and Hall (see discussion); thereby, 

it also indicates that the internal Si-Si bonds are weaker than 

the terminal Si-Si bond. 

Relative Molar Response for the Silanes 

The retention times for the silicon hydrides are given in 

Table 3- The number of carbon atoms for hydrocarbons have been 

plotted against the logarithm of the retention time (Desty and 

Whyman, 1957). The points on the graph can be connected by 

a straight line. Similarly, a plot of the logarithm of the 

retention times for silanes versus the number of silicon 

atoms has been shown to be a straight line (Borer and Phillips, 
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Table 3- The retention times for the silanes. Flow rate of 
helium was 80 ml/min. The temperature of the gas 
chromatograph column was 65°C 

Compound Retention times (min) 

monosilane 5-5 

disilane 7.4 

trisilane 16.2 

tetrasilane 5 3 . 0  

pentasilane 1 7 2 . 3  
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1959). When the values in Table 3 are plotted in a similar 

manner, the result is also a straight line. 

The relative molar responses for mono- and disilane 

calculated from experimental data are recorded in Tables 4 

and 5- In Table 4, the first column of figures is the 

pressure in cm of the gases collected in the U-tube. The 

second column gives the volume of the U-tube. The third 

column is the number of moles calculated by means of the gas 

law equation from the pressure and volume given in the first 

and second columns, respectively. The fourth column is the 

area of the chromatogram peak measured with a plamineter. 

The remaining columns give the relative molar responses and 

the necessary information for the calculation of the standard 

deviation of the mean value for the relative molar response. 

In Table 5, the first column gives the pressure in cm of the 

gases collected in the U-tube. The second column is the 

number of moles calculated from the gas law equation. The 

third and fourth columns are the areas of the chromatogram 

peaks which were measured with a planimeter. The fifth column 

is the number of moles of monosilane calculated from its 

area in'the third column and its previously calculated 

relative molar response from Table 4. The sixth column gives 

the number of moles of disilane remaining after the moles of 

monosilane in the fifth column have been subtracted from the 

total number of moles in the second column. The remaining 

columns give the relative molar response values and the 
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Table 4. Relative molar response for monosilane 

Pressure of the Volume 
silane in the sample 
sample U-tube (ml) 
(cm Hg) 

of the Moles of Area of 
U-tube silane silane 

(xlO-D) peak 
( sq. in.) 

RMR of ARMR (ARMR)2 
silane 

3.51  6 .5178 63.99 22.90  43.5 9.2 86.64 

1.11 5.9298 3.54 6.00  51 .6  1.1 1.21 

6.23  6.5178 21.85  11.68 65.1  12.4 153.76 

9.93  5.9298 32.01  l4.o8 53.5 0.8  0.64 

4.12 6.5178 14.45 6.06 51.0 1.7 2.89  

9.40 5.9298 30.00  26.56 53.9 1.2 1.44 

3.25 5.9298 10.37  9 .12  53.5 0.8  0.64 

34.60 5.9298 110.4 48.46 53.4 0.7 0.49  

5.34 5.9298 17.04 8.36  59.7 7.0 49.00  

2 .70 5.9298 8.62 3.52 49.6  3.1 9.61  

1.57 5.9298 5.01 1.98  48.0 4.7 22.09  

9.29 5.9298 29.65 21.91 44.9 7.8 60.89  

14.17 5.9298 45.23 42.56 57.2 4.5 20.25  

13 )584.9 207.55  
Coefficient of variation=10.6 mean value 52.7 ̂  5-Ô 
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necessary information for the calculation of the standard 

deviation of the mean value for the relative molar response. 

For the measurement of the relative molar response two micro­

liters of benzene, which is equivalent to 22.5 x 10~° moles, 

gave an average area of I8.I5 square inches for the conditions 

described in the experimental section of this dissertation. 

For convenience in the calculations, the average ratio of the 

moles of benzene to the area of its peak was used. When the 

relative molar responses for the hydrocarbons are plotted 

against their molecular weight, a straight line connects the 

points (Messner, Rosie, and Aragright, 1959) &s shown in 

Figure 28. In order to estimate the relative molar response 

for trisilane, the assumption was made that the plot of the 

relative molar responses of the silanes would also be linear. 

The graph for the plot of the relative molar responses versus 

the molecular weight for the silanes is given in Figure 2 8. 

The relative molar response for trisilane was found by 

extrapolating the line which connects the points for mono-

and disilane to the point corresponding to the molecular 

weight of trisilane. Its value is 159-

Hydrolysis Products of the Rare Earth Silicides 

The mole percent of the silanes produced in the reactions 

of the rare earth silicides with 6 N H^PO^ are reported in 

Table 6. The mole percent of silanes produced during the hy­

drolysis of Cej-Si- when the acid concentration was varied is 

recorded in Table 7- The rate of the reaction increased 

with temperature.. 
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RELATIVE MOLAR RESPONSE {BENZENE = 100) 

Figure 28, Relative molar response of n-paraffins and 
silanes versus molecular weight 
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Table 6. Results for the hydrolysis of rare earth silicides with 6 N H^PO^ 
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CD 
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Q) 'H 
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•H 
CD CO 
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"rSi-
5 3 

35813 

^5'^^3 

^5^13. 

130.6  3.52 0.50  248.1 3 .34 0.  315 251.76  
L

P
I 00 

1.33  0 .  13 

192.6  3.12 0.34 365.9 2 .96  0 .  214 369.07 99.14  0 .80  0 .  06  

176.0  - 0.21 334.4 _a 0.  132 334.53 99.96  - 0. 04 

119.7  6.66  0.50 227.4 6 .31 0.  315 234.03 97.17  2 .70  0 .  13 

145.3 1.26  - 276.1  1  .19 277.57 99.57  0 .43  

115.2  l4.96 0.65  218.9  14 .18 0.409 233.49 93.75  6 .07  0 .  18 

79.36 8.02  0 .78  150.8  7 .  60  0 .491 158.89  94 .90  4 .78  0 .  32  

104.3 7.40 0.29 198.2  7 .02  0 .  182 205.40 96.49  3.42 0.  09 
136.6  1.47 - 259.5 1 .39 260.89  99 .47  0.53 
l46.6 25.92 - 278.5  24 .57 303.07 91.87  8.11 

167.0  1.24 - 317.3 1 .18 318.48 99.63  0.37 

139.5 13.56 - 265.1  12 .85  277.95 95.38  4.62 

147.8  8 .76  - 280.8  8 .30 289.10  97 .13  2 .87  

145.3 0.78  - 276.1  0 .74 276.84  99 .73  0 .27  

386.6 3.84 - 734.5 3 .64 738.14 99.50  0 .50  

^The dlsilane probably decomposed since the reaction vessel was heated to 
dryness before the products were collected. 
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Table y. Hydrolytic reactions of Ce^Si* with changes in acid concentration 
(H3PO4) ^ ^ 
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(1) CO r~i «H COCOO CO I—10 CO «HO 1—ICOO 0 1—| «H 

' O O C !  o  *  d ' H  *  d  CO *  a ) O H  ( U ' H i — ( (DCOH m  r 4  < D C \ 5  ([) t\ O  CO 
•H CJ O CD d Cl) CO O' d) 'H O* 1—I CH «—I CO 1—! «H 4-) 1—I 1—1 rH 1—I CO 1—I «H 
O O 'H ?-i O CO -H CO {m CO O O X O "H X O ki X O O M O «H O -H O 5^ 
< u +3 < 0^ <13^ < S S H 0--^ s w S'a S-P 

water 117.8 0.54 223.8 0 .51 224.3 99.77 0 .23 

2N 117.8 0.86 223.8 0 .82 224.6 99.63 0 .37 

4N 92.2 5.22 0. 67 175.2 4 .95 0 

1—1 CM 

180.6  97.03 2 .74 0. 23 

6n 176.0 
6.66 

0. 21 334.4 0 .132 334.5 99.96 0. o4 
119.7 6.66 0. 50 227.4 6 .31 0 .315 234.0 97.17 2 .70 0. 13 

8N 141.4 1.12 268.7  1 . 06 269.8  99.61 0 .39 
127.4 0.78  242.1 0 .739 242.8 99.70 0 .30 

ION 115.8 2.22 220.0 2 .10 222.1 99.05 0 .95 
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DISCUSSION 

Relative Molar Response 

The detector of the gas chromatograph has two separate 

compartments. One contains a tungsten filament. The other one 

contains a matching reference filament. Helium flows con­

stantly through the compartment which houses the reference 

filament while a mixture of the sample and helium flows 

through the other compartment. The matching reference fila­

ment is opposed to the tungsten filament in a Wheatstone 

circuit by which the change in resistance of the tungsten 

filament is measured. Since the resistance of a tungsten 

filament is dependent on its temperature, the change in its 

resistance is a measure of the heat conducted from the fila­

ment by the sample. A measurement of the heat loss from the 

filament is directly related to the change in the concentra­

tion of the eluate per unit volume of helium as it emerges 

from the chromatograph column. The exact measurement of heat 

loss from the filament is difficult. This requires a knowledge 

of (a) the dimensions of the filament and cell, (b) the 

thermal conductivities of the samples, and (c) the temperature 

differential between the cell and the filament. These 

quantities are interdependent and variable. For example, one 

of the equations reported by Dal Nogare and Juvet (1962) for 

the relationship between the response of the detector and the 

thermal conductivities of the gases is; 
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AT. 

X 
£ = AT 

S 

(18) 

"Where AT^/x = specific cell response. 

k = thermal conductivity of the solute, 

k = thermal conductivity of the carrier gas, 
ê 

AT = temperature difference between the filament 

and the cell wall and 

X = mole fraction of solute. 

The quantity in parentheses is referred to as the thermal 

conductivity factor (TC). In order to estimate the cell 

response, the thermal conductivities of the gases must be 

known before the thermal conductivity factor can be calculated. 

A mathematical relationship has not been discovered by which 

the exact calculation of the thermal conductivity can be 

made. An approximate relationship is 

where M = the molecular weight and 

k = thermal conductivity. 

According to this equation, the thermal conductivity decreases 

rapidly for the first few members of an homologous series. For 

the higher members of an homologous series the thermal con-

ducitivity tends to approach a limiting value. The smaller 

molecules have larger thermal conductivities. (If a small and 

a large molecule absorb equal amounts of energy from a hot 

surface, the small molecule has a larger velocity and reaches 
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a cooler surface sooner than the large molecule.) At any 

rate the thermal conductivity (TC) can only be approximated. 

Because of this, along with other variables present in the 

detector, quantitative methods are not conveniently applicable. 

Attempts have been made to eliminate the variables by comparing 

the thermal conductivities of the sample against the thermal 

conductivity of an internal standard such as benzene. For in­

stance, the ratios of the TC of a gas relative to the TC of a 

benzene-helium mixture have been considered but the results are 

only fair. A more accurate method is based on sensitivity factors. If the 

sensitivity of the detector were the same for all compounds, 

then the fraction of the peak area for component A divided by 

the total peak area of all the compounds in the original 

sample would be the same as the mole fraction for component A. 

Since the sensitivities for the compounds are not the same, the 

area percent of component A cannot be assumed to be numerically 

equivalent to the mole percent of A in the original sample. 

There is not a one-to-one correspondence between area and 

moles. The sensitivity factors convert peak areas to correspond 

to the actual moles introduced into the chromatograph. Rosie 

and G-rob (1957) determined the sensitivity factors for the 

hydrocarbons. By an internal standard method they determined 

the detector response per mole of hydrocarbon relative to the 

response per mole for benzene. The sensitivity factors, 

called the relative molar responses, RMR, are independent of 

the gas flow rate, the sensing device, the temperature, and 
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the concentration (Messner, Rosle and Aragright, 1959). 

The relative molar response is directly proportional to the 

molecular "weight and inversely proportional to the thermal 

conductivity (see Table 6). The coefficient of variation for 

the relative molar response for the silanes is greater than 

that reported for the hydrocarbons (Rosie and Grob, 1957)-

This may be attributed to a decomposition of the silanes on 

the filament. 

Table 8 illustrates the trend in thermal conductivities 

and relative molar responses for some of the paraffins and 

silanes. The thermal conductivity for the hydrocarbons are 

from the report by Roger A. Svehla (1962). They were calcu­

lated from experimentally available viscosity data. The 

thermal conductivities for the silanes, on the other hand, 

were estimated from statistical thermodynamics and theoretical 

viscosity equations given in the Appendix. A silane and a 

paraffin which have the same molecular weight have approximately 

equivalent relative molar responses. Within homologous series, 

such as silanes or paraffins, the relative molar response 

increases and the thermal conducitivity decreases with 

increasing molecular weight. The equation used for the 

calculation of the thermal conductivity contains a term which 

includes the heat capacity. The thermal conductivity for 

trisilane was not calculated since its heat capacity could, not 

be estimated. 
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Table 8. Thermal conductivities and RIVIR for straight chained 
hydrocarbons and silanes at 3OO °K 

Compound Molecular 
Weight 

Thermal conductivity 
(x 106) g-cal/(cm) 
(sec) CK) 

RMR 

me thane 16 85.0a 36 

ethane 30 54.2^ 51 

propane 44 43.3* 65 

butane 58 41.0®- 85 

pentane 72 38. 105 

benzene 78 25.9& 100 

monosilane 32 53.0& (46.7)t 52 

disilane 62 35.5^ 106 

trisilane 92 - (15! 

^The value was calculated'from viscosity data by Roger 
A. Svehla (1962) 

^The value was calculated from force constants as 
shown in the appendix. 

The value was determined by the linear extrapolation 
of the values for monosilane and disilane. See Figure 28 . 
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Mass Spectra of the Silanes 

No simple or accurate method has been invented to 

calculate the mass spectra of all molecules in terms of a 

priori assumptions. Two theories which have been proposed are 

based on the molecular orbital theory of chemical valencies 

and the quasi-equilibrium rate theory. Lennard-Jones and 

Hall (1952) applied the molecular orbital theory for the 

calculation of the ionization potential for the paraffins. 

In order to do this, they had to calculate the distribution of 

a resultant positive charge among atoms after an electron was 

removed from a molecular orbital. The fraction of the 

positive charge residing on each carbon atom was calculated 

by squaring the coefficients of the carbon-carbon orbitals. 

They postulated that the weakest bond remaining after the 

ionization of the molecule would,be the bond with the largest 

accumulation of a positive charge. In the derivation for the 

calculation of the ionization potential, Lennard-Jones 

(19^9) found that a more convenient description for an 

ionized molecule involved introducing "equivalent orbitals". 

Molecular orbitals belong to irreducible representations of 

the symmetry group which involve the molecule as a whole. 

They are convenient for discussion of properties such 

as excitation or ionization of a molecule by light. Equivalent 

orbitals are identical members of the same symmetry group 

except for orientation and position in space. They described 

localized properties of the molecule such as charge distribution 
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in bonds. They are the quantum mechanical analogue of 

localized chemical bonds, lone pairs or inner shells. The 

equivalent orbital method is based on the assumption that the 

electronic wave functions of a molecule can be expressed as 

a matrix e^^ of mutually orthogonal equivalent orbitals, 

each involving the co-ordinates of one electron only. The 

matrix can be transformed to give a diagonal matrix 3... The 
J 

diagonal elements of the matrix then represent the 

vertical ionization potentials of the electrons in the 

corresponding molecular orbitals (Lennard-Jones and Hall, 

1949). The matrix elements in e^^ represent the interaction 

parameter between atoms with respect to two equivalent 

orbitals X and of the self-consistant Hamiltonian H. 

The matrix can be represented by the equation 

^ V + A)X^dr (20) 

where 

V = S 
n n — n 

A é  =  -s 
n • n 1 n 

The change in the interaction parameters due to the alteration 

of a neighboring orbital, often referred to as an inductive 

effect, was avoided by assuming that chemically equivalent 

orbitals have equal interaction parameters as if they were 

mathematically equivalent, i.e. chemically equivalent orbitals 
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are surrounded by the same immediate neighbors. 

In order to find the ionization potential and molecular 

orbitals from known equivalent orbitals, a matrix for which 

= ZT X 
i t it 4 

must be found. The transformation of the matrix e follows 

E = ST'^e T . (21) 
ij m mi mn jn 

Such a matrix for the diagonalization of e^^ is 

determined by solving the eigenvalue equations. In other 

words the roots are determined for the secular determinant 

associated with the variation theorem. The determinant is 

- E'mnl = ° ' (22) 

The roots', represent the ionization potentials and the 

molecular orbitals are found from the corresponding eigen­

vectors determined for the required matrix T^^- 0^ the basis 

of a semi-empirical method the matrix elements for e are 

calculated from the lowest, observed ionization potentials 

for methane and ethane. These constants are then used in the 

calculation of the ionization potentials for larger saturated 

molecules. The expansion of the molecular orbitals of the 

paraffins in terms of equivalent carbon-carbon orbitals is 

shown by Lennard-Jones and Hall (1952) to be 

R2n = R (23) 

where r= 1,2,1..., s., and s = number of carbon atoms. 
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The fragmentation pattern is proportional to the terras. 

The fragmentation pattern of n-octane at $0 eV parallels the 

charge densities on the different carbon-carbon bonds 

(Thompson, 1953)- However, Coggeshall (1959) showed that the 

series increases proportionally by 2 sin where n is the 

number of carbon atoms starting with a terminal atom (n = 1) 

and increasing to the center atom (n = s). The maximum value 

occurs at approximately one-half the molecular weight. The 

mass spectra for paraffins larger than n-octane have large 

ion peaks for Cg and fragments. Coggeshall (1959) thus 

proved that the above method was not applicable to all 

paraffins. Lorquet (I966) suggested that the charge is too 

evenly distributed over the large paraffin molecules for 

decisive influence on the fragmentation patterns. He also 

improved the above theory by considering the inductive effects 

and the modification of the molecular orbitals subsequent to 

ionization. 

The calculation of mass spectra according to the quasi-

equilibrium theory is based on the assumption that the 

ionization of a molecule by electron impact is a Franck-

Condon transition. (The equilibrium distances between the atoms 

of a molecule in its ground,molecular state are not the same 

as those in its ground ionic state. A vertical line from the 

minimum point of-the potential energy curve for'the ground 

molecular state to the-potential energy curve for the ground 

ionic state intersects- the potential energy"curve for the ion 
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at a point above the ground ionic state. The vertical line 

represents the removal of a valence electron from a molecule 

without any change in its internuclear distances. The process 

is called a vertical transition or a Franck-Condon transi­

tion. The process of ionizing a molecule from its ground 

molecular state to its ground ionic state along a non-vertical 

line is known as an adiabatic transition.) As a result the 

ion has excess energy above the ground ionic state. The 

quasi-equilibrium theory assumes that the excess energy is 

randomly distributed as vibrational energy throughout the ion 

before it decomposes. In other words the molecule becomes an 

activated ion before it decomposes to the final fragments. 

Therefore, the molecular processes are a series of competing, 

consecutive, unimolecular decompositions. For this reason 

the quasi-equilibrium theory states that a mass spectrum is 

not the initial fragmentation pattern. 

If the assumptions are made that the equivalent orbital 

theory can be used to explain the mass spectra of molecules 

and that the equivalent orbitals used in the calculations for 

the paraffins are analogous to the equivalent orbitals in 

the silanes, then the main fragment of the mass spectra of 

the silanes should have a mass approximately one-half the 

corresponding molecular weight. From the results for the 

mass spectra of the silanes. observed in this research, the 

theory o^Lennard-Jones and Hall does approximately apply 

since the major ion peak for the fragmentation pattern for 
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disilane, trisilane, tetrasilane and penrasiiane occurred at 

m/e = 60. However, the mass spectra for tetrasilane and 

pentasilane changed with time, i.e. they decomposed. The 

kinetics and energies involved in the fragmentation of these 

silanes are certainly important factors for the explanation 

of their mass spectra. 

Hydrolysis Reactions of the Rare Earth Silicides 

Silicon, like carbon, has four valence electrons which 

occupy s and p orbitals. The chemical properties of elements 

which have the same number of valence electrons are usually 

quite similar. The chemistry of silicon, however, cannot be, 

as a rule, inferred from that of carbon. There are two 

striking differences between the two elements, the ability for 

catenation and the formation of double and triple bonds by 

the carbon atoms. For many years the bonds of carbon have been 

explained by the hybridization of the atomic orbitals, i.e. 

an s electron is promoted to a p orbital and the four orbitals 

are mixed to form four equivalent sp orbitals. In addition, 

2 sp and sp hybrids can form. These hybrid orbitals are 

speculated in the formation of multiple bonds. For example, 

2 if two sp hybrid orbitals on adjacent carbon atoms are so 

directed that a maximum overlap of the orbitals results in 

the formation of a bond, the remaining p orbitals which lie 

in the same plane and are not used in the hybridization are 

close enough to overlap with one another to form a (P - P ) T T  

bond. In comparison, the distance between adjacent silicon 
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atoms with an overlap of two sp orbitals to form a sigma 

bond is too great to permit the overlap of the two adjacent 

remaining p orbitals in order to form a TT bond. The reason 

for the large distance between silicon atoms is the repulsion 

of inner shell non-bonded electrons under the valence shell 

of the silicon atoms. Carbon has only 2 inner shell electrons 

per atom while silicon has 10; therefore, carbon atoms are 

able to approach closer to one another. Consequently, the 

absence of multiple bonds in the silicon hydrides from the 

hydrolyses is not surprising. On the other hand the silicon 

atom does have available d orbitals where as the carbon atom 

does not. If an atom with a great enough electronegativity 

is bound to a silicon atom, the d orbitals can contract to 

such an extent that they are available for the formation of 

bonds. In fact, the change from the unstable silicides of 

the electropositive metals to the stable refractory compounds 

of the transition metals occurs where the overlap of the d or 

f - and s- orbitals of the metals is possible, thus, forming 

more stable bonds. 

The Si-Si bond is weaker than the C-C bond and this fact 

probably contributes to the inability for the silicon to link 

with itself to form long chains. However, the ionicity of 

the bond and the rest of the molecule must also be considered. 

For example, the Si-Cl bond is stronger, yet more reactive, 

than say the Si-C bond. The greater shift in the polarity 

of the Si-Cl electrostatic charges on the atoms due to the 
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greater electronegativity of CI compared to C delocalizes 

the electrons to give a small positive charge to the silicon 

atom. The silicon atom is susceptible to an electrophilic 

attack by a hydride ion as noted in the hydrolytic reactions. 

Kachi and Kanno have investigated the relationship between 

the crystalline structure and chemical bonding of the carbides, 

and the hydrolysis products. They observed the following 

correlations : 

(a) The hydrolysis of the monocarbides of UC and ThC 

which have a NaCl structure produces methane. This is expected 

since metal atoms prevent bonding between carbon atoms in the 

carbides and thereby the occurrence of C-C bonds in the 

products is less likely. 

(b) The hydrolysis of the dicarbides, LaC2 and CeC?, 

give acetylene which can be expected since the dicarbides have 

structures similar to NaCl if the C-C linkages are each 

considered a single group. 

(c) The degree of single, double and triple bond character 

2 _ of the C2 units in the crystalline structure were calculated 

from the mole fraction'of the products methane, ethene and 

acetylene formed during hydrolysis. The distance for the 

C-C bond calculated from the hydrolysis products agreed with 

the C-C distance determined experimentally by crystallography. 

The C-C distance for LaC2 and CeC2 lies between the C-C 

distances for double and triple bonds. 
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The results from the hydrolysis of the rare earth 

silicides are summarized below. 

(a) Monosilane is the major product in all reactions. 

(b) Intermediate rare earth silicides produce the largest 

relative amount of disilane. 

(c) Temperature and acid strength increase the rate of 

hydrolysis. 

(d) The lighter rare earth silicides produce some 

trisilane while the heavier rare earth silicides do not. 

(e) An acid concentration between 4 and 6 N produces 

the largest yield of trisilane in the case of the hydrolysis 

of Cer8i_. 
9 3 

(f) The hydrolytic reactions did not produce tetra- or 

pentasilane. 

The bond lengths for Si-Si, M-Si and M-M have not been 

reported for the rare earth silicides, M^Si^. For a similar 

structure, Ta^Si^, the bond lengths are 3.081, 2.61Â and 

2.56Â for the bonds Si-Si, Ta-Ta, and Ta-Si, respectively 

(Nowotny, 1955)- If the assumption is valid that the bond 

lengths for the rare earth silicides, M^Si^, are approximately 

the same as those reported for Ta^Si^, then the Si-Si bond in 

the silicides is assuredly longer than the Si-Si bond in 

disilane. (The length of the Si-Si bond in disilane is 

2.330 = O.OO5I.) (Svec and Saalfeld, I966 p. I755). Disilane 

probably does not form by a direct hydrolytic mechanism 

on the silicides surface but rather it is formed by the 
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combination of silyl radicals. 

The rare earth silicides of the structure M^Si? probably 

have ionic character. Since silicon is more electronegative 

than the rare earth elements, the silicon atom can be expected 

to have a small negative charge surrounding it. A hydronium 

ion is attracted to the surface of the silicide by the electro­

static force of the silicon atom, so much so in fact, that 

some of the silicon atoms break metal-silicon bonds to form 

radicals with the hydrogen. A typical reaction might be 

v + 
M ̂Sig + 3H^0 - + 3SiH * 

SiH- + 2H- SlHg' 

Once the silyl radicals are formed, they may produce disilane 

by the following combination 

SiH?" + SiH^- - SigH^ . 

If disiHyl radicals are formed by the reaction 

SiHg: + SiH-' -» SigH^- , 

the formation of trisilane.can occur by two processes which are 

(a) SigH^' + SiH^' - SigHg or 

(b) SlgHg- + 

Sijj_H^Q -* Si^H^" -r SiH^' 

-i- H- - Si Eg . 
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SUMMARY 

The silicides, larSi-, 06^81^, Pr^Sl^, NdrSl?, Gd^Si^, 
0  O  D  D  J  D  O ù  D  D  

Dy^Si^ and Er^Si?, were prepared by direct combination of the 

elements in an arc meIter under an atmosphere of argon. They 

were hydrolyzed with 6 j\' E^PO^. In all of the reactions 

monosilane (95 mole percent or more) and disilane ( 5 mole 

percent or less) were produced. Trisilane was formed by the 

hydrolysis of La^Si^, Ce^Si^ and Md^Si- but it was not observed 

for the hydrolysis of Pr^8i_, Dy^Si^, Gd^Si^ and Sr^Si^. No 

tetra- or pentasilane was produced in any of the reactions. The 

hydrolytic reactions for Ce^Si^ were studied as a function of 

the acid concentration, when Ce^Si^ was hydrolyzed with water, 

2 N, 8n or 10 N H^PO^, only monosilane and disilane were 

formed. For 4 N and 6 R H^PO^, trisilane was also observed. • 

The silanes were separated by means of a gas chromatograph 

and identified with a mass spectrometer. In order to calculate 

a more accurate value for the number of moles of silanes from 

the area of the chromatogram peaks, the sensitivity factors 

(relative molar responses) of the chromatograph detector were 

determined. The values for the relative molar responses for 

monosilane and disilane were 52-7 - 5.6 and IO5.5 = 12.2, 

respectively (benzene = 100). The relative molar response for 

trisilane was estimated from the relative molar responses of 

monosilane and disilane to be 159-
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APPENDIX 

Calculations for the Thermal Conductivities of the Silanes 

The mechanism of heat conduction has been explained in 

terms of the kinetic theory of gases. A gas is composed of 

small, constantly moving, uniform particles called molecules 

which are separated by an average distance larger than their 

diameter. The thermal energy of a moving molecule is the 

summation of its rotational, vibrational, and translational 

mot on. The interaction or collision of molecules with one 

another is a means by which energy (heat) is transported. If 

a gas is separated by two parallel plates, each maintained at 

a different temperature, molecules which collide with the 

hotter plate acquire thermal energy and as a result have an 

increase in velocity. A molecule can exchange its kinetic 

energy to other molecules in collisions until the energy 

originally absorbed from the hotter plate is communicated to 

the cooler plate. The net result is a transport of thermal 

energy. The phenomena is known as thermal conducitivity. 

For a monatomic gas, the kinetic energy is exclusively 

translational energy. For polyatomic gases, the kinetic energy 

includes rotational and vibrational energy. 

Clausius (1862) proposed the calculation of thermal 

conductivity by the summation of all of the molecules which 

collide while they pass through a given area per unit of 

time. His work was the basis for the equation. 



www.manaraa.com

99 

where X = thermal conductivity, 

r, = viscosity, 

c^ = specific heat at constant volume, and 

f - correction coefficient. 

The correction coefficient is a function of the nature of the 

gas and is the most difficult variable to define. 

Maxwell (1867) and Boltzmann (I872) independently 

introduced a calculation for thermal conducitiviries which 

considered the effect of intermolecular forces on the number 

of collisions between gas molecules. Their derivations 

contained terms relating the rotation of a molecule and the 

repulsion or attraction between molecules. They assumed that 

molecules interact at small distances for a very short period 

of time. Although their equation did show correctly a direct 

proportion between thermal conductivity and temperature, it did 

not give satisfactory values for experimental results. 

Sutherland derived an expression which related the tempera­

ture dependence of the correction coefficient. In his 

derivation he introduced an equation of motion which defined 

the path of deflection of a molecule as it approached another. 

Chapman (I9II) was able to calculate values corresponding 

closer to experimental values by adding more terms to 

Sutherland's equation. He also applied the Maxwell velocity 

distribution function assuming that the velocity changes with 

position. In conjunction with a correction coefficient 
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expression derived by Snskog (igiy), he later developed an equa-

tion which was based on the following assumptions (Chapman, I916) 

(1) All molecules are solid and freely rotating. (2) Trans­

formation of rotational to translational energy occurs, and 

vice versa. (3) The radius of a molecule changes with 

relative velocity of the pair of colliding molecules. 

Hirschfelder, Curtiss and Bird (1954) made a detailed 

analysis of the Enskog-Chapman theory by applying a variation­

al principle. They expressed transfer coefficients in terms 

of a system of integrals whose values depend on the potential 

function of intramolecular interactions. In the strictest 

sense their equation applied only to monatomic gases because 

their theory was based on the assumptions: (a) that molecules 

have spherical symmetry, (b) that pair collisions only occur, 

and (c) that the exchange of internal energy is negligible. 

Thus for polyatomic molecules they introduced a correction 

coefficient due to Eucken (I913) which corrected the calcula­

tions for translational, rotational and vibrational components 

of energy. Their equation was used for the calculation of 

the thermal conductivity for the silanes in • this dissertation. 

The equation used for the calculation of the thermal 

conductivity is 

X x 10^ = g [15/ 4 + 1.32 ^ ) ](r| x loG) (25) ' 

where X = the summation of the translational and internal 

thermal conductivities 
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[g-cal/(cm) (sec) (°K)], 

H = gas constant [1.98726 s-cal/(g-mole) 

M = "molecular weight [g/g-mole], 

Cq= heat capacity ':t constant pressure [g-cal/(g-mole) 

(°K)], 

= coefficent of viscosity [g/(cm) (sec)]. 

When the experimental viscosity was not available, it was 

calculated from the following equation 

^ X ^0 - (26) 
a Q ̂ ^ ' 

where M = molecular weight [g/g-mole], 

T = temperature [°K], 

a = low-velocity collision diameter [A], 

Q(2,2)* _ yg^uced collision integral. 

The calculation of the reduced collision integral, which 

depends on the intermolecular forces, are based on the Lennard-

Jones (12-6) potential energy for the interaction of colliding 

gas molecules. The integrals are tabulated as a function of 

the reduced temperature KT/e in Table I-M (Plirschfelder, Curtiss 

and Bird, 1954, pp. 1126-1127). Thus, it is necessary to know 

the force constants CT and e/k for each kind of molecule, Fnen-

ever the data is available, the constants are obtained from 

measurements for the viscosity and thermal conductivity of the 

molecule. Otherwise they are estimated from physical properties 

such as critical constants, boiling points, boiling-point 

densities, melting-point densities and second virial coefficients 



www.manaraa.com

102 

Specifically, the equations of the line which made a least 

square fit of accumulated measured values e/k versus boiling 

point and a versus boiling point molar volume were used. 

They are 

e/k = 1.18 (27) 

where is the boiling point temperature, and 

= lar (2-0 \ - 5) (28) 

where N is Avogadro's number (6.023 x 10 molecules/g-mole) 
O 

and is the molar volume at the boiling point (cm^). 

The heat capacity for disilane was estimated by the 

equation 

= (ACf)t f (ACp)v + + (ACp)e (29) 
^ ^ K K K 

where (fCp)^, the changes in 

heat capacity due to translational, vibrational, rotational 

and electronic energies, respectively. K is the Boltzmann 

constant. The changes in heat capacities for the various types 

of energy were calculated from the equations; 

(AC ) 

—K 7' 
P_^ - 5. (30) 

= 1, (31) 
K 

= 0. and (32) 
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(ACp)^ \ 

K 
^0.7193 _ ^ 

sinh ^ij . (33) 

The wave number (v\) for the different modes of vibration 

were taken from the report by Wilson and Bethke (1957). 
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